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3 An Introduction to Digital Communication Systems
Over Discrete Memoryless Channel (DMC)

3.1 Discrete Memoryless Channel (DMC) Models

In this section, we keep our analysis of the communication system simple
by considering purely digital systems. (Recall that the transmitted signal

analog waveform.) To do this, as shown in Figure [3]

including the physical

from an antenna is an
we

Y: channel output

Figure 4: Equivalent Channel Considered in Section

Example 3.1. In Chapter [2| the (equivalent) channel does not change (cor-
rupt) its input. The channel output is assumed to be the same as the channel
input.
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Example 3.2. The #& symmetric channel (BSC) which is the
simplest model of a channel with errors, is shown in Figure [j]

T

Figure 5: Binary symmetric channel and its channel diagram

e “Binary” means that the there are two possible values for the input and
also two possible values for the output. We normally use the symbols
0 and 1 to represent these two values.

e Passing through this channel, the input symbols are complemented
with crossover probability p.

switehover
it- £l
o Itis si;nfplefyet it captures most of the complexity of the general prob-
lem.

Example 3.3. Consider a BSC whose samples of input and output are
provided below

x101111111111@Q1(@11111
yi11111111101101@0)11111

Estimate the following (unconditional and conditional) probabilities by their
relative frequencies.

p[ _0] _..=o1'5 p[le]x‘_T_?
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Figure 6: Discrete memoryless channel

Definition 3.4. Our general model for discrete memoryless channel
(DMC) is shown in Figure [g]

e The channel input is denoted by a random variable X.

o The pmfpx(Z) is usually denoted by p(x).
FO: cgoqf\el r(_o} = 7°>t£°) = P[x =O]
P“) 2 f’x(j) = f'LX: 1]

o Thelsupport Sx is often denoted by X.

x X may be referred to as the channel input alphabet.
* In many DMC, |X| is a power of two.

o For finite |X|, the whole pmf p(z) is usually expressed in the form
of a row vector p or 7.

e Similarly, the channel output is denoted by a random variable Y.

o The pmf py(y) is usually denoted by ¢(y) and usually expressed in
the form of a row vector q.

o The support Sy is often denoted by Y and referred to as the chan-
nel output alphabet.
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e The channel corrupts its input X in such a way that when the input
is X = x, its output Y is randomly selected from the conditional pmf
py|x (y|z).
P(ANB) P[Y=y, X=x]
Q(yle)= f’ﬂxtﬂn) = PEIZ'X =x]=PlAIB)= P(B) ) PlXx=«)

Nt

A B

o In this context, each conditional probability py x(y|z) is usually
referred to as the channel transition probability.

o The conditional pmf py x(y|z) is usually denoted by Q(y|z).

and usually expressed in the form of a (probability) transition

matrix Q:
N N Y ot Yy Y
o
i :

This matrix is often referred to as the “matrix of transition prob-
abilities” or simply the “channel matrix”.

o The channel is called memorylesd™”| because its channel output at
a given time is a function of the channel input at that time and is
not a function of previous channel inputs.

o Here, the transition probabilities are assumed constant. However,
in many commonly encountered situations, the transition probabil-
ities are time varying. An example is the wireless mobile channel
in which the transmitter-receiver distance is changing with time.

10Mathematically, the condition that the channel is memoryless may be expressed as [12, Eq. 6.5-1 p.
355]

n

pyn|Xw yrlat) = H (Yk |7x)
k=1

where =7 denotes the vector (x1,xa,...,x,).
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Channel Input P[X = x] P[Y y|X = x|
Alphabet M row vector

Sx =X px()=p)=Hp pnx(ylx) = Q(ylx):> Q matrix
Sy=Y M =qmyq | pxy(x,y) =ple,y) =D P omaix

row ;Ctor 1]

Channel Output Il
Alphabet P[Y:y] P[X:x Y:y]

Figure 7: Notation involved in defining and describing characteristics of digital communi-
cation channels

Example 3.5. Recap: Let’s try to rewrite each of the probabilities calcu-
lated in Example using our new notation:

P[X =0] = plo) P[X =1] =p(0
Py =0] = %(0) Py =1] =eg
PlY =0|X =0] =&(elo) PlY =1|1X =0]=&(1)0)
PY =0|X =1]=@(ol1) PlY =1 X =1]=z6(111)

3.6. For a binary symmetric channel (BSC) defined in [3.2] we now have
three equivalent ways to specify the relevant probabilities:

P[Y =0[X =0]=Q(0[0)=1-p y 0 ! N
P[Y=1X=0]=Q(1j0)=p X

X P[Y =0X =1]=Q(0f1)=p Qi{l_p p }
P[Y =1x =1]-Q(1})=1-p il p 1-p

/

Definition 3.7. When the alphabets are collections of integers, we usually
write p(z) and q(y) as p, and g, respectively.

Alternatively, when the members of the alphabets are explicitly indexed (as
T1, To, ... and Yy, ya, . ..), we often define

pi =p(z;)) and ¢ = q(y;).
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Example 3.8. Suppose, for a DMC, we have X = {x1,29} and Y =
{v1,y2,y3}. Then, its probability transition matrix Q is of the form

Q= Q(yilz1) Q(y2lz1) Q(ys3]z1)
Q (y1l72) Q (2| 72) Q (y3|x2)

You may wonder how this Q happens in physical system. Let’s suppose
that the input to the channel is binary; hence, X = {0,1} as in the BSC.
However, in this case, after passing through the channel, some bits can be
losﬂ rather than corrupted). In such case, we have three possible outputs

of the channel: 0, 1, e where the “e” represents the case in which the bit is
erased by the channel.

Example 3.9. Consider a DMC whose samples of input and output are
provided below

 lasdigss 80018 %5

Estimate its input probability vector p, output probablhty vector q, and Q
~

matrix. \ =
A o o 1
N = _,:'_ l.‘-
- Aa 12]= 0.2 0.9 = |
p=[pre pu) "'[zo e L I\ (@Y s 3 4
L O

—95 [%‘” %[2) %(3’-\ [Lo 20 2_0

={o4 oss o.zs]

3.10. Observe that the sum along any row of the Q matrix is 1.

e This is different from the P matrix (the joint probability matrix) that
was the main focus in basic probability class. Recall that, for P matrix,
the sum of all elements in the matrix is 1.

o See [B.17 for more discussion about the P matrix.

3.11. The channel matrix Q is often defined or visualized in the form of
the channel diagram as shown in Figure [§ Note that each arrow should
be labeled with the transition probability Q(y|z). See also Example [3.12]

HThe receiver knows which bits have been erased.
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Figure 8: Conversion between the channel matrix and the channel diagram.

Example 3.12. The channel diagram for a channel whose

0.5 0.2 0.3
XZ{O,l}, y:{1’273}’ 22[0208], and Q: [03 0.4 03]

is shown in Figure [9]

/ Figure 9: Channel diagram for Example
X %ézz Y
2T
r(1)%08/1>—3

3.13. Knowing the input probability vector p and the channel (probability
transition) matrix Q, we can calculate the output probabilities q from

q=pQ (5)

To see this, recall the total probability theorem: If a (finite or in-
finitely) countable collection of events { By, B, ...} is a partition of £2, then

P(A) = ZP(A N B;) = ZP(A|B¢)P(Bi)~ (6)
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= P(ANB,)+P(ANB,)

+P(ANnBs)+P(ANnB,) +P(ANB:)

For us, event A is the event [Y = y|]. Applying this theorem to our
variables, we get

gly) =P[Y =yl =) P[X =2 =y
=Y PV =y|X =2]P[X =2] =) Q(ylz)p(x)

This calculation, illustrated below, is exactly the same as the matrix multi-
plication calculation performed to find each element of q:

Yi

|2
Il
1
O
—
<
~—
L1
Il
3
Il
1
L1

Q

Example 3.14. For a binary symmetric channel (BSC) defined in [3.2]

g(0)=P]Y =0=P[Y =0,X =0+ P[Y =0,X = 1]
—P[Y=0/X=0P[X=0+P[Y=0X=1P[X =1]
=Q(010)p(0)+Q(0[1)p(1)

]
)

Q010)] _ [Q(O
”[ <0|1>]—E[@<ou
Y =1 =PV =1,X =0/ + P[Y = 1,X = 1]

= [ p(

(1=p) Xpo+pXxp

P

P[Y=1X=0PX=0+P[Y =1X=1P[X =1]
@

[ p(

q(1)

(110)p(0) + Q111 p(1)
101 [
1 o0h) =] ot

pXpo+(1—p)xpr 32



Therefore,

3.15. Recall, from ECS315, that there is another matrix called the joint
probability matrix P. This is the matrix whose elements give the joint
probabilities Pxy(z,y) = P[X =z,Y =y

Recall also that we can get p(z) by adding the elements of P in the row
corresponding to z. Similarly, we can get ¢(y) by adding the elements of P
in the column corresponding to y.

By definition, the relationship between the conditional probability Q(y|z)
and the joint probability Pxy(z,y) is

QyI=) =PIy %=x]

P
. Y Q(y\a?) — M
= P(A)B) = PLANE) pl)
Equivalently, ﬂ;)
= PLT7 X2 pev(a,y) = pl2)Q(ylz).
Px=x]

Therefore, to get the matrix P from matrix Q, we need to multiply each
row of Q by the corresponding p(z). This is illustrated in Figure . The
same calculation could be done easily in MATLAB by first constructing a
diagonal matrix from the elements in p and then multiply this to the matrix
Q:

P = (diag (p)) Q. (7)
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Figure 10: Conversion from the Q matrix to the P matrix and the output probability

vector q.

Once the P matrix is obtained, we can calculate the output probability
vector q by adding the elements of P along each column; this gives

Example 3.16. Binary Asymmetric Channel (BAC): Consider a bi-
nary input-output channel whose matrix of transition probabilities is

(Tl D)

\YO 1

find the corresponding output prob-

ablhty vector q and the joint probability matrix P for this channel.

ﬂ=[ .‘5

ail..

O.
*0.3

30'5

Alter md-:vo\)/)



[18, Ex. 11.3]

Example 3.17 (General BAC). Similar to Example where we have

three equivalent ways to specify BSC. We also have three different ways to
describe a general BAC:

P[Y =0X =0]=0Q(0/0)=1-a NN B
P =1x =0]=Q(1o) =« Qé {1—(1 a }
P[Y =0|X =1]=Q(0]1)=8 T _

PLY =[x =1]=Q(1ft)=1-2 L 'B/

Example 3.18. Find the output probability vector q and the joint proba-
bility matrix P for the DMC defined in Example 3.12;

0.2
ol|los o2 o3 ————> ©[0.10 0.04 0.0

1 0.3 04 03| ———— 1 |o.24 0.-52 0.24

lz ]z )z
%._._[o,y., 0.36 0.30]
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